Lesson 10. Inference for Regression Slope - Part 1

Note. In Part 2 of this lesson, you can run the R code that generates the outputs in here Part 1.

1 Overview

• Recall the simple linear regression model:

 $Y = \beta_0 + \beta_1 X + \varepsilon \qquad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$

- We want to infer something about the population based on our sample
- We've seen how to obtain and interpret **point estimates** of β_0 , β_1 and σ_{ε}^2
- The parameter we're usually most interested in is
- Our main questions:
 - 1. Do *X* and *Y* truly have a (linear) relationship at the population level?
 - 2. What can we infer about the nature of their relationship (size and direction) at the population level?

2 Sampling distribution of $\hat{\beta}_1$

- We will see shortly that the *t*-test and confidence interval computations rely on the *t*-distribution. Why?
- Under the conditions for simple linear regression:

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

• We can standardize:

$$\frac{\hat{\beta}_1 - \hat{\beta}_1}{\sqrt{\frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^n (x_i - \tilde{x})^2}}} \sim N(0, 1)$$

• Since we don't know σ_{ε}^2 , we estimate it with $\hat{\sigma}_{\varepsilon}^2 = \frac{SSE}{n-2}$:

$$\frac{\hat{\beta}_1 - \beta_1}{SE_{\hat{\beta}_1}} \sim t(df = n - 2) \quad \text{where} \quad SE_{\hat{\beta}_1} = \sqrt{\frac{SSE/(n - 2)}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

• The standard error (SE) is the standard deviation of a statistic

3 *t*-test for the slope of a simple linear regression model

- 1. State the hypotheses
- 2. Calculate the test statistic
- 3. Calculate the *p*-value
 - If the conditions for simple linear regression hold, then the sampling distribution of the test statistic under *H*₀ is
- 4. State your conclusion, based on the given significance level α
 - Provide your **decision**: e.g., reject H_0 , fail to reject H_0
 - State your conclusion in terms of evidence: e.g.,
 - We see significant evidence that the true slope is not 0
 - $\circ~$ We do not see significant evidence that the true slope is not 0

Example 1. Let's look at the PorschePrice data again. Recall that we were interested in predicting Price from Mileage.

a. Fit a simple linear model predicting Price from Mileage.

Recall we did this in Lesson 6, using the following R code:

```
library(Stat2Data)
data(PorschePrice)
fit <- lm(Price ~ Mileage, data = PorschePrice)</pre>
```

b. Before we do any inference, it is important to make sure the **conditions** for a simple linear regression model are reasonably met.

Recall that we already did this in Lesson 7.

c. Use the R output to test the hypothesis that $\beta_1 = 0$ at the $\alpha = 0.05$ significance level. Here is the output from summary(fit):

```
Call:

lm(formula = Price ~ Mileage, data = PorschePrice)

Residuals:

Min 1Q Median 3Q Max

-19.3077 -4.0470 -0.3945 3.8374 12.6758

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.09045 2.36986 30.0 < 2e-16 ***

Mileage -0.58940 0.05665 -10.4 3.98e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.17 on 28 degrees of freedom

Multiple R-squared: 0.7945, Adjusted R-squared: 0.7872

F-statistic: 108.3 on 1 and 28 DF, p-value: 3.982e-11
```

```
• Other things to note:
```

• What's happening in the (Intercept) line of the output?

• If we want to do a **one-sided test** for β_1 (for example, $H_0 : \beta_1 \ge 0$ versus $H_a : \beta_1 < 0$ in the Porsche example above), how could we use the R output to get the correct *p*-value?

4 Confidence interval for the slope of a simple linear regression model

• If the conditions for a simple linear regression model are met, then we can form a CI for *β*₁ with the following formula:

Example 2. Use the output from Example 1 to do the following:

- a. Construct a 95% confidence interval for β_1
- b. Interpret your interval.

• You can compute the 95% CI for β_1 with this R code instead:

confint(fit, level=0.95) # level is the confidence level

• The resulting output looks like this:

A matrix: 2 × 2 of type dbl		
	2.5 %	97.5 %
(Intercept)	66.2360186	75.9448869
Mileage	-0.7054401	-0.4733618

- Other things to note:
 - Again, we could do something similar for β_0 , but we usually don't
 - There is a direct connection between the hypothesis test and the confidence interval
 - ♦ If we form a 95% CI for $β_1$ and it doesn't contain 0, then a hypothesis test of $β_1 = 0$ (versus $β_1 ≠ 0$) will reject the null at the α = 0.05 significance level